
bhyve - Improvements and Comparison for the live
migration feature for the wired and non-wired

guests
Elena Mihailescu

Faculty of Automatic Control and Computer Science
University Politehnica of Bucharest

Bucharest, Romania
maria.mihailescu@upb.ro

Mihai Burcea
Faculty of Automatic Control and Computer Science

University Politehnica of Bucharest
Bucharest, Romania

mihai.burcea2508@stud.acs.upb.ro

Darius Mihai
Faculty of Automatic Control and Computer Science

University Politehnica of Bucharest
Bucharest, Romania
darius.mihai@upb.ro

Mihai Carabas
Faculty of Automatic Control and Computer Science

University Politehnica of Bucharest
Bucharest, Romania
mihai.carabas@upb.ro

Abstract—Nowadays, one of the most important aspects when
it comes to cluster and grid management is client’s services
availability. When a cluster node fails or various maintenance
operations need to be done, the virtual machines are usually live
migrated on other nodes.

FreeBSD is an operating system that is mainly used in server
environments. Nevertheless, its hypervisor, bhyve, does not have a
live migration feature added in upstream, yet. However, progress
towards adding live migration support was made in the last years
by the students of University Politehnica of Bucharest. This paper
presents the latest changes proposed by the students of the same
university, and measures the impact of these changes compared
to the previous implementation.

Index Terms—bhyve, live migration, cloud infrastructure,
wired guests, non-wired guests

I. INTRODUCTION

In the last years, we can see a shift from on-premises hosted
services to cloud-hosted ones [1] [2] [3] [4]. The advantages
of running in the cloud (easier management, pay only for the
resources you use, easier up or downscale when needed) weigh
more to small to medium businesses than taking care of the
same services on-premises.

Thus, cloud providers’ work must ensure that their services
(the resources they give to clients) run smoothly and without
issues that may affect the clients and their end-users. A cloud
provider may run their services in a:

• private cloud - the infrastructure is still on-premise, but
with automatic deployment and resource management.

• public cloud - the infrastructure is public and a client
pays for the resources they use.

The authors would like to thank Matthew Grooms and Modirum for their
financial support in forms of scholarships for the students that worked on
these features

• hybrid cloud - a combination between the two of the
above

In order to have clients and a running business, a cloud
provider must meet a number of requirements [5] [6]:

• resource management - each client must receive the num-
ber of resources they request; the background operations
must be completely transparent for the user.

• reliability - the resources must be always available and
the services must be running continuously.

• scalability - the architecture must scale up or down (i.e.,
allocate more or less resources), depending on the client’s
needs.

• high availability - even if one of the nodes crashes or
needs to be replaced, the client’s resources and services
must remain available.

• distributed environment - a high-available infrastructure
must be implemented using nodes distributed across
multiple data centres.

• security - the clients’ resources must be isolated; in case
of a security breach in one client’s services, the rest of
the clients must not be affected.

When choosing between various methods of setting up
a cloud environment, the cloud providers must take into
account their needs and the available technologies [7] [8]. In
order to ensure the above-mentioned requirements, they may
choose between native virtualization using virtual machines
or containerization. Because of the flexibility, security and
resource isolation they provide [8] [10] [11], cloud providers
usually choose native virtualization for their business. More-
over, they may choose various orchestration technologies such



as OpenStack1 or OpenShift2 for easier usage.
One of the features that come in help when balancing the

load on the nodes or ensuring high-availability is the virtual
machine migration functionality. Hypervisors such as Hyper-V,
VMWare, Xen or KVM allow their users to migrate the virtual
machines from one host to another. Nowadays, migration is a
necessity when managing a cloud infrastructure.

Virtual machine migration means to move a guest from
one node to another while the guest is running. There are
several methods for migration: cold migration (which means
to move the guest image while the guest is powered off), warm
migration (pause the guest’s execution and move it to another
node and, then, restore its execution) and live migration (move
the guest while it is still running, with the smallest possible
downtime).

When choosing between operating systems (and hypervi-
sors) that are deployed on the physical nodes, the system
administrators need to choose between various operating sys-
tems. Usually, they choose between BSD-based and Linux-
based operating systems.

Considering the advantages it brings (mature, complete
operating system with both kernel and user space implemen-
tations, BSD license, network stack, security enhancements
such as CAPSICUM etc.), FreeBSD is a good candidate as
an operating system in cloud infrastructure. However, bhyve,
its hypervisor, lacks in providing a migration implementation
yet.

This paper presents the improvements added to the
FreeBSD’s hypervisor in order to support the migration of
non-wired guests as well as a comparison between the times
needed for wired versus non-wired guests. The end goal is to
create a robust migration functionality that can help system
administrators to use FreeBSD as an operating system when
setting up their cloud infrastructure.

With this study, we aim to measure the impact of the
current implementation in the migration process and to check
the overhead brought by the swap in-swap out operations.
Moreover, this paper aims to detail the scenarios we have used
and their results to confirm that our implementation [15] can
be further taken into consideration for upstreaming.

This paper is structured as follows: the first section shows
the current global context related to the virtual machine
migration in cloud infrastructures; the second section describes
the migration mechanism that is implemented in bhyve and
used as a reference and measurement baseline for the current
paper; the third section presents the improvements we have
added to bhyve. The fourth section depicts the setup and
testing procedure, while the fifth section shows our results.
In the last section, we conclude our paper.

1https://www.openstack.org/, last accessed 3rd of March, 2023
2https://www.redhat.com/en/technologies/cloud-computing/openshift, last

accessed 3rd of March, 2023

II. BASELINE MIGRATION IMPLEMENTATION IN BHYVE

As presented in [12] [13], students from University Po-
litehnica of Bucharest have implemented warm and live mi-
gration features for bhyve. The later works only for wired
guests (i.e., their memory is allocated beforehand and cannot
be swapped). However, a full live migration feature must work
on non-wired guests as well.

Between the migration types, the most complex one, but
with the smallest downtime (i.e., the time in which the guest
is unavailable) is live migration. To allow the guest’s memory
movement from one host to another, the migration is done in
rounds. While the guest runs on the source node, its memory
is migrated to the destination node. In the first round, all the
guest memory is moved across the network. In the next ones,
only the pages that were modified during the previous rounds
are migrated. The memory changes are tracked using a custom
dirty bit [12].

The previous live migration implementation [12] [13] needs
the physical pages to be allocated and present in the main
memory in order to traverse and retrieve the pages that were
modified between rounds. Moreover, it copies the pages’
content from kernel space to user space and, then, sends it over
the network. However, this approach adds overhead through:

• context switches - the implementation switches from user
space (bhyve process) to kernel space to inspect the pages
that are dirty, then switches back to user space to report
the results, then back to kernel space to start copying the
modified pages.

• buffers - the implementation duplicates the memory con-
tent: various buffers are allocated to retrieve the page
content from kernel space while the guest’s memory is
already mapped in the user space bhyve process (indi-
cated by vmctx->baseaddr.

III. IMPROVEMENTS OF THE LIVE MIGRATION FEATURE IN
BHYVE

This section proposed various changes to improve the live
migration feature in bhyve.

A. Non-wired guests support

One of the most important improvements added to the live
migration feature is the extension to the non-wired guests.
This addition offers bhyve a robust feature that works without
memory allocation constrains.

For this improvement, we checked the page state. If it is
not allocated, the page does not need to be migrated, thus
being ignored. If the page is allocated, but swapped out, the
page is brought into the memory and migrated, taking into
consideration that the VMM dirty bit is also saved on disk.

B. Remove multiple copies of the same data

The baseline implementation relayed on multiple copies of
the same information between kernel space and user space. As
depicted in Figure 1, the baseline implementation [12] needed
ioctl calls to copy the page content from the kernel space
to the user space. Then, this data was sent through a socket



to the destination where, using another ioctl call, the page
is written in the kernel space.

network buffer network buffer

migration buffer migration buffer

1 (ioctl) 4 (ioctl)
2 (send) 3 (recv)

send

Source
host

Destination
hostbhyve

address space
bhyve

address space

kernel
space

kernel
space

Fig. 1: Memory migration in the previous implementation

The previously presented approach may not be suitable since
it generates multiple context switches to access the desired
pages. Moreover, modifying the pages directly in the kernel
space may be considered a dangerous operation and can lead
to vulnerabilities (e.g., accessing the wrong pages may lead to
kernel panic).

network buffer network buffer

migration buffer migration buffer

2 (send) 3 (recv)

send

Source
host

Destination
hostbhyve

address space
bhyve

address space

kernel
space

kernel
space

baseaddr baseaddr
1 (memcpy) 4 (memcpy)

Fig. 2: Memory migration in the current implementation

Thus, we changed the approach. Instead of copying the
page’s content from the kernel space, we are using the guest’s
memory-mapped area in the bhyve user space process. Based
on the starting memory address (vmctx->baseddr), the
page index, and the page size, we can determine the memory
area corresponding to the desired page. The new process is
depicted in Figure 2.

C. Link pages to bhyve’s memory

In theory, the changes proposed in Section III-B should have
improved the migration time. However, during tests, and as
presented in Section V, we observed that Round 1 took as
much time as Round 0, even if the guest’s memory activity
was almost nonexistent (see Figure 5a and 5b).

Further debugging showed that this behaviour is caused
by the bhyve’s dual memory view [12]. Figure 3 hints the
process: the same physical pages are once accessed by the
guest through the nested page table [14] and once by the bhyve
user space process that also maps the guest’s memory (starting
from vmctx->baseaddr).

The guest interacts with the physical pages, through the
nested page tables, in a normal fashion. However, the link
between the bhyve’s virtual address and the guest’s physical
page is not created when the memory segments are mapped.
Thus, acting similar with on-demand paging, the link is created
the first time that page is accessed from the user space (e.g.,
from the emulated devices that need to interact with the guest’s
memory).

…

…

…

…

bhyve’s address space

guest’s address space

baseaddr

Physical pages

Normal guest 
activity

Emulated devices 
access
or Round 0’s 
memcpy

Fig. 3: Dual memory view

In our case, the round duration anomaly we observed was
determined by this dual memory view: the first time the guest’s
memory was accessed from the bhyve user space process
was during migration’s Round 0. Thus, the dirty bit was set
again for all the guest’s pages. The solution was to hint the
virtual memory subsystem, using the madvise() function
with MADV_WILLNEED as behaviour, that those pages need
to be immediately mapped, without page faulting since they
are already allocated.

IV. SETUP AND TESTING PROCEDURES

The testing setup is designed to mimic a cluster architecture:
we have multiple same-type nodes that are connected in the
same network. In addition, we have a distributed storage
between them where the guest’s disk image is kept.

Due to the fact that one of our main goals is to compare
the live migration enhancements to the previous version, we
propose the same setup as presented in [13]. The setup is
depicted in Figure 4 and contains:

1Gbps
Ethernet

FreeBSD
Source

FreeBSD
Destination

NFS
Storage

bhyve
VM

Migrate
VM

Fig. 4: Testing setup



• two identical FreeBSD hosts with 4 cores and 16GB of
RAM. As CPU, both run on an Intel(R) Core(TM) i7-
4790 @ 3,60GHz. They run the same version of FreeBSD
with the same migration code. Both systems use HDDs
for storage, and both have configured up to 16GB of
swap.

• a distributed (NFS) storage that contains the guest’s
image file. As opposed to the setup described in [13],
the NFS storage is hosted on one of the two FreeBSD
systems described above.

• a 1Gbps Ethernet network through which the hosts and
the distributed network storage can communicate.

For testing, we used a FreeBSD guest that is started on the
FreeBSD source with various parameters and, then, is migrated
to the FreeBSD destination host. Since we aim to check our
changes over the old test-bed, we run the same two types of
tests:

• a simple test that starts the virtual machine, logs in, and,
waits for commands.

• a memory stress test that starts the virtual machine,
allocates a lot of memory and, then, continuously reads
and writes one byte from each allocated memory page.

While the former does not impact the guest’s virtual
memory, the latter heavily modifies almost all the available
memory. These two are the most extreme use-cases: the first
one almost does not require more than 2 rounds, while the
second one, in a real-life situation, would probably require a
warm migration procedure.

In terms of migration parameters, we tested both wired
and non-wired guests, adjusting the virtual machine’s memory
from 1 to 12GB of RAM for the former and from 1 to 14-
16GB of RAM for the latter. For each test, we measured each
round and the downtime. The downtime is considered to be
the time in which the guest is stopped. It is composed from
the following times:

• the last round duration;
• the guest’s state (CPU’s, emulated and virtualized de-

vices’ state) snapshot time;
• network transfer time;
• memory and guest’s state restore time;
• migration completed message time.

V. RESULTS AND CURRENT LIMITATIONS

As stated, this paper also offers a comparison between the
old and the new approach in terms of downtime in various
scenarios. The scenarios are based on the ones defined in [13]
and are meant to test extensive guest functionality. We are
measuring the total migration time and downtime for wired
and non-wired guests.

Figures 5f and 6 present each round of migration for each
test comparing the times each of them took. Each graphic
presents a comparison between the previous implementation
and the new one. Moreover, we considered the non-wired live
migration scenario.

From both figures, we can observe that:

• Round 0 lasts almost the same in the previous imple-
mentation as in the new one for the wired guests. Since
in the first round, all the guest’s memory is considered
to be dirty and transferred to the destination, it means
that the current implementation does not bring additional
overhead.

• Round 1 takes almost as long as Round 0 for both test
case scenarios, for both wired and non-wired guests.
However, this did not happen in the previous implementa-
tion. This is the result of the dual memory view presented
in Section III-C and is corrected in Figure 7.

• All the rounds for the non-wired guests take less time than
their wired-memory counterpart tests (both with old and
the new implementation). This behaviour is normal since
the memory that is not used (or allocated beforehand)
needs to be migrated. Moreover, this also shows that
the non-wired implementation does not bring additional
overhead.

• The memory stress test (Figure 6) shows that all the
rounds take almost the same time to complete since
almost all the guest’s memory is migrated in each round.

• The non-wired memory guest migration support allowed
us to extend our testings for guests with more than 12GB
of RAM. For the simple test scenario, we managed to
create and migrate virtual machines with up to 16GB of
RAM, while for the memory stress test, we managed to
allocate up to 14GB of RAM. As seen, the behaviour is
similar to the previous tests.

• In all the cases, the migration bottleneck is the network
since the 1Gbps Ethernet connection is saturated (e.g., for
6GB, the minimum transfer time over the 1Gbps network
is around 50 seconds, like in our results).

• When testing the memory stress test scenario for guests
with more that 13GB of RAM, part of the memory was
swapped. Thus, the live migration works even if the pages
are swapped out.

These extensive testing procedures (with more than 100 run
tests) allowed us to fine-tune our solution and solve some non-
trivial issues. However, while testing we also observed various
limitations to our implementations that will be presented in the
following paragraphs.

The first issue we found is related to the dual-memory
view that is presented in Section III-C. Due to the fact that
we moved the memory transmission part in the user-space,
each copy from Round 0 would generate a page fault from
the bhyve’s user space tool. Thus, the guest’s page would be
marked as dirty again and copied in the next round (Round 1).
The solution presented in Section III-C improved the migration
time.

A comparison before and after this improvement with
regarding the first two rounds can be seen in Figure 7. The
time drops significantly in Round 1 for the simple test scenario
after we added the improvements. For the memory stress test
scenario, we can see that the memory that is migrated is the
one that is modified by our testing executable.

Another issue we were facing is testing the memory stress



(a) Round 0 (b) Round 1 (c) Round 2

(d) Round 3 (e) Round 4 (f) Downtime

Fig. 5: Simple Test - Rounds Comparison

(a) Round 0 (b) Round 1 (c) Round 2

(d) Round 3 (e) Round 4 (f) Downtime

Fig. 6: Memory Stress Test - Rounds Comparison

test scenario with guests with more that 15GB of RAM in hosts
with 16GB of RAM. Allocating 15GB for the virtual machine
and constantly writing at least 14GB of RAM inside the virtual
machine, led the operating system to swap out either virtual
machine pages or bhyve’s user space tool pages which led the
migration process to be very slow. The tests were inconclusive
since sometimes the rounds took as expected (e.g., 120-130
seconds per round) and other times the rounds would take up
to 2h. Moreover, the host system would start crashing (out of
memory) or be unresponsive (the services would be killed)
due to the swap trashing process. Furthermore, increasing the
guest’s RAM size and allocating RAM SIZE − 1 GB leads
to less than 200MB of RAM available in the guest.

VI. CONCLUSION AND FURTHER WORK

This paper presents the improvements added to the bhyve’s
live migration feature. We extended the live migration func-
tionality to non-wired guests and fixed various issues (e.g.,
double buffering, on demand paging for Round 1). Then,
we tested the implementation using two extreme use-cases:
a simple test in which the guest does almost nothing (i.e.,
very few pages are modified between rounds) and a memory
stress test where almost all the guest’s memory is continuously
written (i.e., almost all the guest memory must be migrated in
each round).

Our aim is to have a fully functional live migration support



(a) Simple test with wired memory (b) Simple test with non-wired memory

(c) Memory stress test with wired memory (d) Memory stress test with non-wired memory

Fig. 7: Rounds 0 and 1 comparison before and after using madvise()

for bhyve that can be used by the FreeBSD’s community. Thus,
based on the results we have obtained, we can conclude that
the recent changes do not impact the performance of the live
migration feature. The bottleneck in migration is either caused
by the network (1Gbps Ethernet in our case) or the swap area
(the swap out/swap in operations are very time consuming due
to the slow HDD read/write operations).

During the time this paper is written, we have a series
of eight open reviews on Phabricator [15] that split our
implementation in smaller parts: the first five are related to
warm migration, and the last three are for live migration. The
implementation is open-source and available on GitHub [16].

As future work, we plan to further improve our implementa-
tion by adding various fine-tuning options such as bandwidth
rate limitation, dynamic number of rounds or maximum migra-
tion time. Moreover, we want to test our feature using real-
life test scenarios (e.g., web servers) and measure the user
experienced downtime.

REFERENCES

[1] Jelassi, Mariem and Ghazel, Cherif and Saı̈dane, Leila Azzouz, “A
survey on quality of service in cloud computing“, 2017 3rd International
Conference on Frontiers of Signal Processing (ICFSP), pages 63–67,
2017, IEEE.

[2] Gelenbe, Erol and Lent, Ricardo and Douratsos, Markos, “Choos-
ing a Local or Remote Cloud“, 2012 Second Symposium on
Network Cloud Computing and Applications, pages 25–30, 2012,
doi=10.1109/NCCA.2012.16.

[3] Fisher, Cameron and others, “Cloud versus on-premise computing“,
American Journal of Industrial and Business Management, volume 8,
no 09, pages 1991, 2018, Scientific Research Publishing

[4] Pahl, Claus and Xiong, Huanhuan and Walshe, Ray, “A comparison
of on-premise to cloud migration approaches“, European Conference on
Service-Oriented and Cloud Computing, pages 212–226, 2013, Springer

[5] Cong, Peijin and Xu, Guo and Wei, Tongquan and Li, Keqin, “A survey
of profit optimization techniques for cloud providers“, ACM Computing
Surveys (CSUR), volume 53, number 2, pages 1–35, 2020, ACM New
York, NY, USA

[6] Rashid, Aaqib and Chaturvedi, Amit, “Cloud computing characteristics
and services: a brief review“, International Journal of Computer Sciences
and Engineering, volume 7, number 2, pages 421–426, 2019.

[7] Tomarchio, Orazio and Calcaterra, Domenico and Modica, Giuseppe Di,
“Cloud resource orchestration in the multi-cloud landscape: a systematic
review of existing frameworks“, Journal of Cloud Computing, volume
9, number 1, pages 1–24, 2020, Springer

[8] Bittencourt, Luiz F and Goldman, Alfredo and Madeira, Edmundo RM
and da Fonseca, Nelson LS and Sakellariou, Rizos, “Scheduling in
distributed systems: A cloud computing perspective“, Computer science
review, volume 30, pages 31–54, 2018, Elsevier

[9] Mavridis, Ilias and Karatza, Helen, “Combining containers and virtual
machines to enhance isolation and extend functionality on cloud comput-
ing“, Future Generation Computer Systems, volume 94, pages 674–696,
2019, Elsevier

[10] Yadav, Anuj Kumar and Garg, ML and others, “Docker containers versus
virtual machine-based virtualization“, Emerging Technologies in Data
Mining and Information Security, pages 141–150, 2019, Springer

[11] Doan, Tung V and Nguyen, Giang T and Salah, Hani and Pandi,
Sreekrishna and Jarschel, Michael and Pries, Rastin and Fitzek, Frank
HP, “Containers vs virtual machines: Choosing the right virtualization
technology for mobile edge cloud“, 2019 IEEE 2nd 5G World Forum
(5GWF), pages 46–52, 2019, IEEE.

[12] Mihailescu, Maria-Elena and Carabas, Mihai, “FreeBSD-Live Migration
feature for bhyve“, AsiaBSDCon, 2019

[13] Mihailescu, Maria-Elena and Mihai, Darius and Carabas, Mihai and



Tapus, Nicolae, “Improving and testing live migration for bhyve“, 2022
21st RoEduNet Conference: Networking in Education and Research
(RoEduNet), pages 1–5, 2022, IEEE

[14] Natu, Neel and Grehan, Peter, “Nested paging in bhyve“, The FreeBSD
Project, 2014

[15] FreeBSD-UPB, Reviews for the migration feature in bhyve, Online:
https://reviews.freebsd.org/D34717, https://reviews.freebsd.org/D34718,
https://reviews.freebsd.org/D34719, https://reviews.freebsd.org/D34720,
https://reviews.freebsd.org/D34721, https://reviews.freebsd.org/D34722,
https://reviews.freebsd.org/D34811, https://reviews.freebsd.org/D34813,
Last Access: 1st of March, 2023

[16] FreeBSD-UPB, Live migration code. Online: https://github.com/
FreeBSD-UPB/freebsd-src/tree/projects/bhyve live migration, Last Ac-
cess: 1st of March, 2023


